Enhanced water vapor separation by temperature-controlled aligned-multiwalled carbon nanotube membranes.
نویسندگان
چکیده
Here we present a new strategy of selectively rejecting water vapor while allowing fast transport of dry gases using temperature-controlled aligned-multiwalled carbon nanotubes (aligned-MWNTs). The mechanism is based on the water vapor condensation at the entry region of nanotubes followed by removing aggregated water droplets at the tip of the superhydrophobic aligned-MWNTs. The first condensation step could be dramatically enhanced by decreasing the nanotube temperature. The permeate-side relative humidity was as low as ∼17% and the helium-water vapor separation factor was as high as 4.62 when a helium-water vapor mixture with a relative humidity of 100% was supplied to the aligned-MWNTs. The flow through the interstitial space of the aligned-MWNTs allowed the permeability of single dry gases an order of magnitude higher than the Knudsen prediction regardless of membrane temperature. The water vapor separation performance of hydrophobic polytetrafluoroethylene membranes could also be significantly enhanced at low temperatures. This work combines the membrane-based separation technology with temperature control to enhance water vapor separation performance.
منابع مشابه
Preparation and Transport Performances of High-Density, Aligned Carbon Nanotube Membranes
We report a simple and effective method for the preparation of high-density and aligned carbon nanotube (CNT) membranes. The CNT arrays were prepared by water-assisted chemical vapor deposition (CVD) and were subsequently pushed over and stacked into dense membranes by mechanical rolling. It was demonstrated that various gases and liquids, including H2, He, N2, O2, Ar, water, ethanol, hexane, a...
متن کاملPolarity-dependent electrochemically controlled transport of water through carbon nanotube membranes.
We demonstrate here that water can be efficiently wet and pumped through superhydrophobic aligned multiwalled nanotube membranes by application of a small positive dc bias. At a critical bias ( approximately 1.7 V), with the membrane acting as anode, there is an abrupt transition from a superhydrophobic to hydrophilic state. Interestingly, this phenomenon is strongly polarity dependent; for a n...
متن کاملAn Overview of Fabrication Methods and Applications of Carbon Nanotube Membrane in Environmental Engineering as Hydraulic Microstructures
The main purpose of this article is to study fabrication methods and applications of aligned carbon nanotube (CNT) membranes as a hydraulic microstructure in treatment processes. This paper emphasizes the use of CNTs as membrane in separation processes like water and wastewater treatment because of their exclusive advantages. Their most important characteristics are high mechanical strength aga...
متن کاملEffects of Furnace and Inlet Gas Mixture Temperature on Growing Carbon Nanotube in a CVD Reactor
Carbon nanotubes (CNTs), nowadays, are one of the important nanomaterials that can be produce with different methods such as chemical vapor deposition (CVD). Growing of CNTs via CVD method can be influenced by several operating parameters that can affect their quality and quantity. In this article, the effects of inlet gas mixture temperature on CNT’s local growth rate, total production, and le...
متن کاملEffects of Furnace and Inlet Gas Mixture Temperature on Growing Carbon Nanotube in a CVD Reactor
Carbon nanotubes (CNTs), nowadays, are one of the important nanomaterials that can be produce with different methods such as chemical vapor deposition (CVD). Growing of CNTs via CVD method can be influenced by several operating parameters that can affect their quality and quantity. In this article, the effects of inlet gas mixture temperature on CNT’s local growth rate, total production, and le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 7 34 شماره
صفحات -
تاریخ انتشار 2015